
797

Self-Organising Agent Organisations

Ramachandra Kota
School of Electronics and

Computer Science
University of Southampton

Southampton SO17 1BJ, UK
rck05r@ecs.soton.ac.uk

Nicholas Gibbins
School of Electronics and

Computer Science
University of Southampton

Southampton SO17 1BJ, UK
nmg@ecs.soton.ac.uk

Nicholas R. Jennings
School of Electronics and

Computer Science
University of Southampton

Southampton SO17 1BJ, UK
nrj@ecs.soton.ac.uk

ABSTRACT
Self-organising multi-agent systems provide a suitable parad-
igm for developing autonomic computing systems that man-
age themselves. Towards this goal, we demonstrate a robust,
decentralised approach for structural adaptation in explic-
itly modelled problem solving agent organisations. Based on
self-organisation principles, our method enables the agents
to modify their structural relations to achieve a better al-
location of tasks in a simulated task-solving environment.
The agents reason on when and how to adapt using only
their history of interactions as guidance. We empirically
show that, in both closed and dynamic organisations, the
performance of organisations using our method is close to
that of an upper bound centralised allocation method and
considerably better than a random adaptation method.

Categories and Subject Descriptors
I.2.11 [Artificial Intelligence]: Distributed Artificial In-
telligence

General Terms
Algorithms, Experimentation, Performance

Keywords
Autonomic computing, Self-Organisation, Organisations

1. INTRODUCTION
Autonomic systems, capable of self-management, have been
advocated as a solution to the problem of maintaining mod-
ern, large and complex computing systems [14]. Now, we
contend that self-organising multi-agent systems provide a
suitable paradigm to develop these autonomic systems, be-
cause such self-organising systems can arrange and re-arrange
their structure autonomously, without any external control,
in order to adapt to changing requirements and environ-
mental conditions. Furthermore, such adaptation needs to
be performed in a decentralised fashion, so that the ensu-
ing system is robust against failures; again, a characteristic
that fits with the multi-agent paradigm [5]. With this mo-
tivation, this paper explores the area of self-organisation in
agent systems, and particularly focuses on adaptation of the
structure in agent organisations.

Cite as: Self-Organising Agent Organisations, R. Kota, N. Gibbins
and N. R. Jennings, Proc. of 8th Int. Conf. on Autonomous
Agents and Multiagent Systems (AAMAS 2009), Decker, Sich-
man, Sierra and Castelfranchi (eds.), May, 10–15, 2009, Budapest, Hun-
gary, pp. XXX-XXX.
Copyright c© 2009, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

In more detail, self-organisation is viewed as the mecha-
nism or the process enabling the system to change its or-
ganisation without explicit external command during its ex-
ecution time [7]. Thus, self-organisation can consist of ei-
ther forming an organisation from disordered entities or re-
arranging an existing organisation. Such behaviour can be
generated in multi-agent systems in several ways [8, 3]. Here,
however, we are primarily interested in multi-agent systems
that act as cooperative problem solving organisations (i.e
those comprising cooperative agents that receive inputs, per-
form tasks and return results). Hence, we focus on develop-
ing self-organisation techniques for such agent organisations.

To date, however, most of the self-organisation mecha-
nisms are not applicable to an explicitly modelled agent or-
ganisation because, being based on reactive agents interact-
ing in unstructured ways, they cannot easily be incorporated
into agents that are working towards organisational goals.
The few mechanisms that do consider agent organisations
[12, 10] are centralised in nature, requiring a few specialised
agents to manage the adaptation process for all the agents.
Though [11] suggest a somewhat distributed method (using
a central blackboard), it involves a diagnostic subsystem for
detecting faults in the organisation that, in turn, map to
some fixed pre-designed reorganisation steps. Such a method
is not applicable when all the states of the system cannot be
anticipated by the designer. Finally, yet other methods, like
organisation self-design [13], achieve self-organisation by dy-
namically spawning and merging agents in response to the
changing requirements. However, since agent-based develop-
ment of autonomic systems involves modelling the individ-
ual components as agents, changing the characteristics of
these components may not be possible on all occasions due
to physical and accessibility limitations (e.g data-centres lo-
cated in remote places cannot easily be replicated).

Against this background, we believe decentralised struc-
tural adaptation in agent organisations is the most appro-
priate way of achieving self-organisation. Here, the struc-
ture of an organisation is a manifestation of the relations
between the agents, which, in turn, determine their interac-
tions. Consequently, adapting the structure involves chang-
ing the agent relations, and thereby, redirecting their in-
teractions. For example, consider a query managing agent
X repeatedly making queries to a data-centre Y (another
agent). Y, in turn, continually passes them to data-centre
Z which possesses the types of information needed by X. In
such cases, if X and Z recognise this and start interacting
directly by forming a relationship between them, it will lead
to savings in bandwidth, processor time and memory, while
also improving the response time. Also, forming the relation

Cite as: Self-Organising Agent Organisations, Ramachandra Kota,
Nicholas Gibbins, Nicholas R. Jennings, Proc. of 8th Int. Conf. on Au-
tonomous Agents and Multiagent Systems (AAMAS 2009), Decker, Si-
chman, Sierra and Castelfranchi (eds.), May, 10–15, 2009, Budapest,
Hungary, pp. 797–804
Copyright © 2009, International Foundation for Autonomous Agents
and Multiagent Systems (www.ifaamas.org), All rights reserved.

AAMAS 2009 • 8th International Conference on Autonomous Agents and Multiagent Systems • 10–15 May, 2009 • Budapest, Hungary

798

between X and Z might result in a decrease in the frequency
of queries from X to Y. Then, it might be better for X and
Y to dissolve their relation in order to improve the overall
query processing time of X.

In this vein, [16] identify that structural adaptation is im-
portant to improve the performance (in terms of costs and
task completion times) of organisations, but do not suggest
a way of achieving it. Some work focussing on agent net-
works [9, 1] deals with agent-based rewiring of acquaintance
links towards improving team formation or task allocation,
thus somewhat resembling structural adaptation in organi-
sations. However their models assume that only one type
of relation can exist in the system and that the number of
links possessed by an agent has no effect on its computa-
tional resources. These assumptions are unrealistic in cases
where agents have to expend resources for managing and
delegating tasks based on their relations or links. Moreover,
if the adaptation process itself also requires computation,
meta-reasoning is needed by the agents to decide ‘whether
to adapt’ (in addition to ‘how to adapt’) or continue per-
forming the tasks without adaptation. Meta-reasoning, in
general, has been explored in a multi-agent systems con-
text [2], but not been applied to self-organisation scenarios.
Thus, this aspect is not addressed by any current methods.

In order to address the shortcomings of the existing ap-
proaches highlighted above, we present a novel structural
adaptation method for agent organisations. Following self-
organisation principles, the method is a decentralised and
continuous process that is followed by every agent to de-
cide on when and how to adapt its relations, based only
on locally available information. Moreover, since it only in-
volves changing the structural relations between the agents,
it can even be applied to scenarios where the agents and/or
their internal characteristics are not alterable by the system.
Thus, our mechanism can serve as a self-management tool
similar to those envisioned in autonomic systems. There-
fore, our method can be seen to extend the state of the art
in terms of structural adaptation mechanisms for agent or-
ganisations by being the first that is generically applicable
to models with a broad range of inter-agent relations and by
addressing the meta-reasoning aspects of adaptation. How-
ever, before undertaking this task, we need to have an ex-
plicit model of a problem solving agent organisation that can
act as the abstract platform on which to base our adapta-
tion mechanism (Sec. 2). By using such a generic platform,
instead of focusing on a particular existing system, we can
develop a general method that can be applied to a wide va-
riety of applications. We present our adaptation process in
Sec. 3, and demonstrate its effectiveness through empirical
evaluation in Sec. 4. Finally. we conclude in Sec. 5.

2. THE ORGANISATION MODEL
Organisation modelling involves modelling the agents com-
prising the organisation, the organisational characteristics,
and the task environment. Though there are several existing
frameworks for such modelling in the literature [19, 6], we
mainly build on the ideas presented by [15] as we found them
sufficient for our requirements. In this context, it should be
noted that our contribution is the adaptation method and
not the organisation model per se. Our adaptation method
can be equally applied to other organisation models.

In our model, the agent organisation comprises a group of
problem solving, cooperative agents situated in a task envi-
ronment. By problem solving, we mean agents that receive

certain input tasks to achieve, execute these tasks and re-
turn the outcomes. Correspondingly, the task environment
presents a continuous dynamic stream of tasks that have to
be performed. In addition, the environment also has costs
associated with passing messages between the agents (com-
munication) and changing their relations (reorganisation).

leaf node SIs
si4(s3,p4)

si3(s0,p3)

si1(s1,p1)

si2(s2,p2)

si0(s0,p0)

(a) Task structure

{ } accm. sets of subrs
[] services of peers

peer
supr
() services of self

subr
peer

ay

(s0,s2){}[s1]

(s0){{s1},{s0,s2,s3}}[]ax

aw

(s1){}
[s0,s2]

(s3){s0,s2}[]
az

(b) Organisation structure

Figure 1: Representation of an example task and

organisation

In more detail, the tasks are modelled as workflows com-
posed of a set of service instances (SI), each of which spec-
ifies the particular service and the amount of computation
required. These SIs need to be executed following a prece-
dence order which is specified in the form of dependency
links modelled as a tree. The execution of a task begins
at the root node and the task is deemed complete when
all its nodes have been executed, terminating at the leaf
nodes. Fig. 1(a) shows an example task composed of five
SIs (si0. . . si4) each requiring a particular service (s0. . . s3)
at a specified amount of computation (p0. . . p1). The re-
quired order of execution is shown by the dependency links
between the SIs. That is, si0 needs to be executed first, fol-
lowed by its child nodes, si1 and si2 (which are executed in
any order or even in parallel), and so on.

The organisation consists of a set of agents A that provide
these services. Every agent is capable of a fixed set of ser-
vices and possesses a fixed computational capacity. Thus,
an agent is of the form ax = 〈Sx, Lx〉 where Sx ⊆ S (S is
the complete set of services provided by the organisation)
and Lx is the agent’s capacity defined in terms of available
computational units in a time step (these are consumed by
the SIs as they are executed). Tasks enter the system at
random time-steps and their processing should start imme-
diately. The processing of a task begins with the assignment
of the root SI to a randomly selected agent. The agent that
executes a particular SI is, then, also responsible for the al-
location of the subsequent dependent SIs (as specified by the
task structure) to agents capable of those services. Thus, the
agents have to perform two kinds of actions: (i) execution
and (ii) allocation. Consider an agent executing SI si0 in
Fig. 1(a). After completing the execution, that agent needs
to find and allocate appropriate agents to execute si1 and
si2, the dependent SIs. Moreover, every action has a load
associated with it. The load incurred for the execution of
a SI is equal to the computational amount specified in its

Ramachandra Kota, Nicholas Gibbins, Nicholas R. Jennings • Self-Organising Agent Organisations

799

description, while the load due to allocation (called man-
agement load) depends on the relations of that agent (will
be explained later). As every agent has a limited computa-
tional capacity, an agent will perform the required actions
on a first-come first-served basis, in a single time-step, as
long as the cumulative load (for the time-step) on the agent
is less than its capacity. If the load reaches the capacity
and there are actions still to be performed, these remaining
actions will be deferred to the next time-step and so on.

As described earlier, agents need to interact with one an-
other for the allocation of the SIs. These interactions are reg-
ulated by the structure of the organisation. This structure
is based on the relationships between the agents. We con-
sider three levels of the agent relationship: (i) acquaintance,
knowing about the presence of, but no interaction, (ii) peer,
low frequency of interaction, and (iii) superior-subordinate,
high frequency of interaction. We assume that all agents
are acquaintances of each other. In addition, any pair of
agents may also have either a peer relation or a superior-
subordinate relation between them. These three types of
relationships are sufficient to describe the different kinds of
interactions possible in a task-allocation setting. In partic-
ular, the type of relation present between two agents deter-
mines the information that they hold about each other and
the interactions allowed between them. We can distinguish
between the various relations as follows:

• An agent possesses information about the services that
it provides, the services provided directly by its peers
and the accumulated service sets of its subordinates.
The accumulated service set (AccmSet) of an agent is
the union of its own service set and the accumulated
service sets of its subordinates recursively. Thus, the
agent is aware of the services that can be obtained
from the sub-graphs of agents rooted at each of its
subordinates, though it might not know exactly which
particular agent is capable of the service.

• During the allocation of a SI, an agent will always try
to perform the SI by itself if it is capable of the service
and has available computational capacity. Otherwise,
it will delegate it to one of its subordinates (which
contains the service in its accumulated service set).
Only if it finds no suitable subordinate (none of the
subordinate sub-graphs are capable of that service),
will it try to delegate the SI to its peers. If it is unable
to do so either (no peer is capable of the service) it will
pass it back to one of its superiors (who will have to
find some other subordinate or peer for delegation).

Therefore, an agent mostly delegates SIs to its subordinates
and seldom to its peers. Thus, the structure of the organ-
isation influences the allocation of SIs among the agents.
Moreover, the number of relations of an agent contributes to
the management load that it incurs for its allocation actions,
since an agent will have to sift through its relations while
allocating a SI. Therefore, an agent with many relations will
incur more management load per allocation action than an
agent with fewer relations. Also, a subordinate will tend to
cause management load more often than a peer because an
agent will search its peers only after searching through its
subordinates and not finding a capable agent. As all the
agents in the organisation are cooperative and work self-
lessly for the organisation, an agent willingly accepts all SIs
delegated by its superiors or peers. Also, the relations are
mutual between the agents, that is for any relation existing

between two agents, both the concerned agents respect it. In
total, the authority relations impose the hierarchical struc-
ture in the organisation while the peer relations enable the
otherwise disconnected agents to interact closely. Using this
model, we abstract away the complex interaction problems
relating to issues like service negotiation, trust and coordi-
nation. We do so to focus on the essence of self-organisation
and to isolate its impact on system performance.

Fig. 1(b) shows an example organisation. The services
that an agent can seek from its relations is shown beside it.
For example, the accumulated service set AccmSetx of agent
ax, in turn, contains two sets representing the accumulated
service sets of its two subordinates ay (s1) and az (s0, s2, s3).

Now, given an organisation, the set of agents A can re-
main static over its existence, or agents may join and leave
the organisation. The first kind of organisation, in which the
agents are unchanging, is here called closed, while the latter
is called dynamic. In what follows, we apply our method to
both. In particular, for dynamic organisations, we focus on
those that have some permanent agents to begin with (sim-
ilar to closed) and some temporary agents who join later,
at specified ‘start-times’, and also leave the organisation at
the expiration of their ‘life-times’. We adopt this type of
dynamic system so that the service set S of an organisation
can be kept constant (the temporary agents will offer ser-
vices chosen from the same S as the permanent ones). In
this way, our method can focus solely on the changes to the
overall capacity (resulting from the temporary agents) in-
stead of the service discovery aspect that might have been
needed1. Consequently, these dynamic organisations repre-
sent distributed systems in which additional resources might
be added to tackle the workload and withdrawn later on.

2.1 Organisation Performance Evaluation
The performance of a computing system denotes how well
it performs its tasks. In terms of an agent organisation, the
performance measure can be abstracted to the profit ob-
tained by it. In our model, the profit is simply the sum of
the rewards gained from the completion of tasks when the
incurred costs have been subtracted. In more detail, the cost
of the organisation is based on the amount of resources con-
sumed by the agents. In our case, this translates to the cost
of sending messages (communication) and the cost of chang-
ing relations (reorganisation) between the agents. Thus, the
cost of the organisation is:

costORG = C.
X

ax∈A

cx + D.d (1)

where C is the communication cost coefficient representing
the cost of sending one message and D is the reorganisation
cost coefficient representing the cost of changing a single
relation. cx is the number of messages sent by agent ax and
d is the number of relations changed in the organisation.

As stated earlier, agents have limited capacities and their
computational load cannot increase beyond this capacity.
The load lx on agent ax in a given time-step is:

lx =
X

sii∈WxE

pi + M
X

sij∈WxF

mj,x + R.rx (2)

where pi is the amount of computation expended by ax for
executing SI sii, mj,x is the number of relations considered
by ax while allocating SI sij , WxE

is the set of SIs (possibly

1We intend to look at other types of dynamics in the future.

AAMAS 2009 • 8th International Conference on Autonomous Agents and Multiagent Systems • 10–15 May, 2009 • Budapest, Hungary

800

belonging to several tasks) being executed by ax, WxF
is

the set of SIs being allocated by ax, and M is the ‘manage-
ment load’ coefficient denoting the computation expended
by an agent to consider one of its relations while allocating
a single SI. In this way, it represents the computational com-
plexity resulting from the relations of an agent. Similarly,
R is ‘reorganisation load’ coefficient, denoting the amount
of computational units consumed by an agent while reason-
ing about reorganisation with another agent and rx is the
number of agents that ax initiated reorganisation delibera-
tion in that time-step. Thus, this represents the excess load
caused by meta-reasoning about reorganisation. Since, the
load lx of ax cannot exceed its capacity Lx, any excess SIs
will be waiting for their turn, thus delaying the completion
time of the tasks. The rewards obtained by the organisation
depend on the speed of completion of tasks. In particular, a
task w completed on time accrues the maximum reward bw

which is the sum of the computation amounts of all its SIs:

bw =
P|siw|

i=0
pi, where siw is its set of SIs. For delayed tasks,

this reward degrades linearly with the extra time taken until
it reaches 0: rewardw = bw − (ttaken − treqd), where ttaken

represents the actual time taken for completing the task,
while treqd is the minimum time needed. Thus, the total re-
ward obtained by the organisation is the sum of the rewards
of the individual tasks completed by the organisation:

rewardORG =
X

w∈W

rewardw (3)

where W is the set of all tasks. The organisation’s profit is:

profit
ORG

= rewardORG − costORG (4)

Thus, for higher profits, the reward should be maximised,
while the cost needs to be minimised. It is important to note
that the agents only have a local view of the organisation.
They are not aware of all the tasks coming in to the organi-
sation (only those SIs allocated to them and their immediate
dependent SIs) and neither are they aware of the load on the
other agents. In spite of this incomplete information, they
need to cooperate with each other to maximise the organi-
sation profit by maintaining the most useful relations which
lead to faster allocation and execution of tasks.

3. STRUCTURAL ADAPTATION
This section details our work on developing a self-organisation
based structural adaptation method that can be employed
continually by all the agents in a problem-solving organisa-
tion. It uses the history of agent interactions only, since we
do not assume that agents possess any information about the
tasks coming in the future. First, we present the basics of
the method and then show how to deal with the temporary
agents of dynamic organisations.

3.1 The Algorithm
We present the mechanism, in a pseudocode form in Algo-
rithm 1, for how an agent ax should reorganise at a given
time-step. The first component (line 1) refers to the meta-
reasoning aspect of choosing the particular acquaintances
for initiating the reorganisation process. The second com-
ponent (lines 3–9) explains how it should adapt its relation
with one such acquaintance ay.

We formulate this part using a decision theoretic approach
since it provides us with a simple and suitable methodology
for representing adaptation in terms of actions and utilities.
We denote the actions available to a pair of agents as those

1 Chosen ← selected from the acquaintances set of ax;
2 foreach ay ∈ Chosen do
3 Actions ← possible actions(x, y);
4 Ux,y ← ∅;
5 foreach e ∈ Actions do
6 Ue ← calculate utilityx,y(e);
7 Ux,y ← Ux,y

S
Ue;

end

8 ebest ← argMax(Ux,y);
9 take action ebest with ay;

end

Algorithm 1: Reorg. method in terms of agent ax

relation state
action
supr−subr
peer

ayax

4. ay supr of ax

1(iii)no action

ax ay

ax ay

3. ay peer of ax

1. ay acqt of ax

2. ay subr of ax

ayax

4(ii)rem subr

3(ii)rem peer+

2(iii)no action

3(i)rem peer

3(iii)no action

2(i)rem subr

4(i)rem subr+
form subr

form subr
1(ii)form subr

1(i)form peer

2(ii)rem subr+
form peer

4(iii)no action

Figure 2: State transition diagram

changing the relation between them. Consequently, the set
of actions available to a pair depends on their relation (line
3). In our model, for every pair of agents, the relation be-
tween them has to be in one of the states— purely acquain-
tance relation, peer relation or authority relation. For each
of these states, there are 3 possible choices of action avail-
able to the agents as shown in Fig. 2. For example, action
1(ii) (form subrx,y) denotes that ax and ay take the action of
making ay a subordinate of ax and transition from state 1 to
2. A transition from state 2 to 4 is not needed because it is
equivalent to the transition from 4 to 2, by interchanging ax

and ay. Similarly, transitions from 1 to 4 or between 3 and
42 are not required. If there were more types of relations in
the model, there would be correspondingly more states and
transitions to represent them.

As can be seen, these actions are composed of four atomic
types— form peer, rem peer, form subr and rem subr, which
translate to forging and dissolving the peer or authority rela-
tions (as agents are acquaintances of each other, by default).
Obviously, each of these actions has to be jointly performed
by the two agents involved in changing the relation. The
utility of performing an action (Ue in line 6) is given by
value function V associated with the relation. Since our en-
vironment is characterised by various factors, like the costs
and the load on the agents, V will have multiple attributes
to represent them. In terms of two agents, ax and ay, the

2In state 4, when az is an indirect superior of ax via ay, it is
not possible for ax to have az as its subordinate (since cycles
are not permitted). Hence, it dissolves its relation with its
immediate superior in the authority chain ay and goes to
state 1 w.r.t ay and then forms a relation with az.

Ramachandra Kota, Nicholas Gibbins, Nicholas R. Jennings • Self-Organising Agent Organisations

801

five attributes that will constitute V are: (i) change to the
load on ax, (ii) change to the load on ay, (iii) change to the
load on other agents of the organisation, (iv) change to the
communication cost and (v) reorganisation cost. Moreover,
this set of attributes exhibits mutual preferential indepen-
dence (MPI). That is, while every attribute is important, it
does not affect the way the rest of the attributes are com-
pared. Therefore, V can be represented simply as a sum of
the functions pertaining to the individual attributes:

V = Δloadx + Δloady + ΔloadOA + ΔcostC + ΔcostR (5)

In this way, depending on the state, the agents jointly cal-
culate the expected utilities for the possible actions using
the value function (which are stored in Ux,y at line 7), and
then choose the action giving the maximum expected utility
(line 8). Being cooperative, the agents do not have conflicts
as the value corresponds to the social utility of the rela-
tion to the organisation and not to the individual agents.
The evaluation for no action will always be 0 as it does not
result in any change to the expected load or cost of the
organisation. The evaluation for the rest of the actions is
obtained from Eqn. 5. In the case of the composite ac-
tions (like rem subr+form peer) the value will simply be the
sum of the individual evaluations of the comprising actions.
Moreover, since any action will be taken jointly by the two
agents involved, even the evaluation is jointly conducted by
the agents with each of them supplying those attribute val-
ues accessible to them.

To understand further, let us look at the utility calcula-
tion (Eqn. 5) for the action form subrx,y when ax and ay are
just acquaintances (state 1). Here, Δloadx, representing the
estimated change to the load on ax, is calculated by consid-
ering that a new subordinate ay will lead to an increase in
the management load on ax every time it tries to allocate a
SI. This is quantified as:

Δloadx = −M ∗ Asgx,total ∗ filledx(ttotal
x)/ttotal

x (6)

where Asgx,total denotes the total number of SIs allocated
by ax, ttotal

x denotes the total number of time-steps that
ax has been in existence, while filledx(ttotal

x) represents the
number among those that ax’s capacity was filled with load
and some SIs were pending. By multiplying this value with
M , it represents the additional load that would have been
put on ax had ay been a subordinate since the beginning.
The negative sign indicates that this value represents addi-
tion to load, and thereby, a decrease in utility. In a similar
fashion, the second term Δloady is calculated by estimat-
ing the possible increase in the load on ay had ax been its
superior since the beginning. For the third term, ΔloadOA,
the estimation is carried out by assuming that, had ay been
a subordinate of ax, all those allocations that started at
ax and ended at ay via a delegation chain involving other
agents, would have been allocated directly. Therefore, the
load on the intermediary agents would have been less (this
value can be calculated by ax as it gets back information
about the delegation chain of each of the SI allocated by it).
Similarly, the fourth term ΔcostC is also estimated, while
the last term, the reorganisation cost (−D) is a known con-
stant (the minus sign, again signifies a decrease in utility).

In this way, using our mechanism, every pair of agents
can jointly evaluate the utility for taking any of the possible
actions towards changing their relation, at any time-step.
Thus, this continuous adaptation of the relations helps in
the better allocation of SIs amongst the agents as they will

maintain relations with only those agents with whom they
require frequent interactions.

In the ideal scenario, at line 1, all acquaintances of an
agent will be chosen for reasoning about adaptation. How-
ever, as the computation required for these utility calcula-
tions and reasoning depends on R (Sec. 2.1), it need not be
negligible and might exhaust the computational capacities
of the agent. Thus, when R cannot be ignored, an agent will
have to smartly select the acquaintances for Chosen in line
1. Thus, effective meta-reasoning emerges as an important
aspect of the adaptation process.

In our case, this problem boils down to the following— at
any given time-step, an agent should decide on how many
and which agents to select for initiating reorganisation pro-
cedures. This can be viewed as a form of the well-known
coupon collector’s problem [18] and, therefore we explore a
simple randomised approach that is typically used for such
problems. In the coupon collector’s problem, there are n
types of coupons and an infinite number of coupons for each
type. At each trial, a coupon is chosen at random. We can
map this problem to our scenario by considering every agent
to be the collector, and all its acquaintances (including the
peers, superiors and subordinates) as the coupons. Also, in
our case, there can be several trials in a single time-step.

Now, if X is the number of trials such that at least one
coupon of each type is collected, then the expectation of X
is: E(X) = nln(n) + O(n) [18]. This assures us that even
when chosen randomly, on average, all acquaintances of an
agent will be picked up for reorganisation deliberation in a
given period of time (for 20 acquaintances, this translates
to approximately just 80 trials). Therefore, an agent can
just randomly choose k acquaintances at a time-step (in line
1). Moreover, this k can be varied according to the situa-
tion. When an agent has free capacity that will otherwise
be wasted, k should be such that the whole of the remaining
capacity is utilised for reorganisation. However, even when
the agent is overloaded, reorganisation might be necessary.
On such occasions, k is based on the percentage of successful
reorganisations in the previous time-step. In more detail, at
a time t, k is determined as:

kt = max{1, (Lx − lx)/R, acqtsx ∗ changedx,t−1/kt−1} (7)

where acqtsx represents the number of acquaintances of ax,
changedx,t−1 denotes the number of relations of ax changed
in the previous time-step, and kt−1 is the k value used in
the previous time-step. The minimum possible value of k is
limited to 1, so that at least one acquaintance is considered
for reorganisation in any time-step. In this way, free capacity
is never wasted and, at the same time, an agent will carry out
reorganisation even when it has a huge number of pending
SIs by adapting k according to its need for reorganisation.

3.2 Dealing with Dynamic Organisations
Having outlined the fundamental part of the structural adap-
tation method, we now discuss how it deals with dynamic
set of agents in an organisation. When a new agent joins
the organisation, it needs to be assimilated into the struc-
ture by the existing ones. However, for an agent to form a
relation with a new agent, it has to be able to predict how
useful the new agent will be and in what type of relation.
This is not straightforward as there are no past interactions
with the new agent on which to base any utility calcula-
tions (as required by our method). Therefore, the agent is
faced with an explore versus exploit trade-off: whether to

AAMAS 2009 • 8th International Conference on Autonomous Agents and Multiagent Systems • 10–15 May, 2009 • Budapest, Hungary

802

explore by forming an authority or a peer relation with a
new agent, or to reorganise with the past agents only by
exploiting the known information about them. This choice
could be tackled by employing specially designed ‘explorer
agents’, whose sole task is to monitor the performance of
all the agents (including the new ones)[17]. However, we do
not use such an approach because it requires special agents
and that contradicts our self-organisation principles. Thus,
our intention is to imbibe the adaptation method into the
task-solving agents without needing any external help.

Against this background, we find that the principle behind
‘Win Or Learn Fast’ [4] is well suited to our problem. The
WoLF principle is— ‘learn quickly while losing, slowly while
winning ’. In our context, an agent can be considered win-
ning if it has unused capacity and losing otherwise (when
it has a pending queue of SIs). Therefore, an agent that
is not overloaded will only follow Algorithm 1 by ignoring
the new agents joining the system. However, an agent with
pending SIs will actively seek new subordinates to be able to
improve its delegation of SIs. This addition to our method
is presented as a pseudocode in Algorithm 2.

1 if WxP

= ∅ then // Set of pending SIs of ax

2 s ← arg-MaxOccuring{WxP
} AND /∈ AccmSetx;

3 As ← agents providing service s;
4 ay ← randomly chosen from As;
5 form subrx,y;

end

Algorithm 2: In terms of agent ax applying WoLF

In more detail, an agent, when overloaded (checking in
line 1), identifies which particular service occurs the most
in its waiting list that is not supplied by any of its current
subordinates (line 2). Then, in line 3, it searches through
all of its acquaintances (including the newly joined agents)
for those offering that particular service. Finally, in lines
4–5, it forms a superior-subordinate relation with one such
randomly chosen agent. As a result, new agents will be
assimilated quickly by the existing agents into the struc-
ture. Moreover, these new agents will end up forming the
relations where they are most needed, thereby leading to
a more equitable distribution of load across the organisa-
tion. In addition, a new agent offering services which are
not much in demand, will be ignored (as the agents offering
those services are winning anyway) and thus not add any
unnecessary management load. In contrast, when an agent
leaves, the others can easily reorganise using our method in
Algorithm 1 without needing any such additional step.

4. EMPIRICAL EVALUATION
We demonstrate the effectiveness of our method through em-
pirical evaluation. We first describe the setting that we used
for experimentation and then present the obtained results.

4.1 Experimental Setup
To determine the effectiveness of our method (which we call
k-Adapt), we compare its performance with two other intu-
itive methods— Central and Random, that act as the bench-
marks. We also compare with a few variations of k-Adapt to
show the importance of all the components of our algorithm.
All of these methods are described below:

Central: This is a centralised allocation mechanism con-
taining a central repository that maintains information about
the service sets and loads of all the agents in the organisa-
tion, and is accessible without cost to any agent. The agents

do not need to maintain any relations; whenever an agent
needs to allocate a SI, it looks up the repository seeking the
most suitable agent (capable of the service and having maxi-
mum free capacity at the time) and allocates to it. Thus, all
allocations are one-step direct delegations, and the agents do
not use up any capacity for allocation. This method gives an
upper bound on the performance of an organisation, but is
not a practical or robust solution to the problem because it
involves maintaining an up-to-date central repository with
costless and instantaneous access to all agents.

Random: In terms of Algorithm 1, this strategy involves
an agent randomly choosing some of its acquaintances for
adaptation (line 1), and then randomly choosing a reorgan-
isation action (line 8). For a fair comparison, the rate of
change is adjusted so that the number of relations in the
structure is roughly equal to that produced by our method.
Thus, this method represents a random structural adapta-
tion strategy which does not involve any reasoning and con-
stitutes the lower bound.

free-Adapt: For this method, the reorganisation load
coefficient R is set to 0. Thus, it is the same as k-Adapt

but differs only in line 1, where all the acquaintances are
chosen for reorganisation instead of just k. This makes it a
theoretical upper bound for the performance of our method.

all-Adapt: Same as free-Adapt, differing only in R,
which is set to the same value as in k-Adapt and not 0.

nowolf-Adapt: This method is used for comparison in
dynamic organisations. It is similar to k-Adapt but without
including the WoLF component presented in Algorithm 2.

While the profit obtained by the organisation (profitORG

in Eqn. 4) represents the organisation’s performance, there
are two independent simulation variables that are of interest:

Distribution of services across agents: This is a rel-
evant parameter because the significance of the organisation
structure is greater when the agents are heterogeneous. In
such a case, an efficient structure will need to connect ev-
ery agent with all those agents providing services relevant
to it and alongside help in load distribution. In contrast, for
homogeneous agents, load distribution is the only feature
that can be influenced by the structure. We distributed the
services among the agents using a parameter called service
probability (SP). That is, an agent ax is allocated a service
si with a probability SP. Thus, when SP is 0, every agent is
capable of a unique service only. When it is 1, every agent is
capable of every service. Since, the services are allocated on
the basis of a probability, there is always randomness in the
way they are allocated to the agents. In our experiments,
we vary SP from 0 to 0.5 only (since we verified that beyond
0.5, when the agents are quite homogeneous, the structures
did not influence the performance significantly).

Similarity between tasks: This is also an interesting
parameter because when tasks are similar, the structure
should be able to adapt to the recurring task structures,
thereby increasing the efficiency of the organisation. We
determine the similarity between the tasks belonging to a
simulation run on the basis of what we call patterns; stereo-
typical task components used to represent frequently occur-
ring combinations of SIs and dependency links. Like tasks,
patterns are also composed of SIs, but are generally smaller
in size. Instead of creating tasks by randomly generating SIs
and creating dependency links between them, tasks can be
constituted by connecting some patterns by creating depen-
dency links between the SIs belonging to the patterns. In
this way, the dependencies between the SIs may follow some

Ramachandra Kota, Nicholas Gibbins, Nicholas R. Jennings • Self-Organising Agent Organisations

803

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 0.1 0.2 0.3 0.4 0.5

%
 o

f M
ax

im
um

 P
ro

fit

Service Probability

% of Maximum Profit vs SP when Tasks are Dissimilar (NoP=0)

k-Adapt
Random

free-Adapt
all-Adapt

(a) Dissimilar Tasks (NoP=0)

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 0.1 0.2 0.3 0.4 0.5

%
 o

f M
ax

im
um

 P
ro

fit

Service Probability

% of Maximum Profit vs SP when Tasks are Similar (NoP=5)

k-Adapt
Random

free-Adapt
all-Adapt

(b) Similar Tasks (NoP=5)

-20

 0

 20

 40

 60

 80

 100

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

%
 o

f M
ax

im
um

 P
ro

fit

Reorganisation Coefficient R

% of Maximum Profit vs R when Tasks are Similar (NoP=5)

k-Adapt
all-adapt

free-Adapt

(c) Profit as R increases

Figure 3: Average Organisation Profit for Closed Organisations

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 0.1 0.2 0.3 0.4 0.5

%
 o

f M
ax

im
um

 P
ro

fit

Service Probability

% of Maximum Profit vs SP when Tasks are Dissimilar (NoP=0)

k-Adapt
Random

free-Adapt
nowolf-Adapt

(a) Dissimilar Tasks (NoP=0)

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 0.1 0.2 0.3 0.4 0.5

%
 o

f M
ax

im
um

 P
ro

fit

Service Probability

% of Maximum Profit vs SP when Tasks are Similar (NoP=5)

k-Adapt
Random

free-Adapt
nowolf-Adapt

(b) Similar Tasks (NoP=5)

 0

 200

 400

 600

 800

 1000

 1200

 0 500 1000 1500 2000

 0

 0.4

 0.8

 1.2

 1.6

To
ta

l P
en

di
ng

 L
oa

d
in

 th
e

O
rg

A
vg

 R
eo

rg
. R

at
e

of
 th

e
O

rg

Time

Load of Pending Tasks and Reorganisation Rate vs Time

temp agents
added

temp agents
removed

Pending Load

Reorg Rate

(c) Pending Load & Reorg. Rate

Figure 4: Average Organisation Profit for Dynamic Organisations

frequent orderings (resulting from the dependencies internal
to a pattern occurring in several tasks) and some random
dependencies (due to the dependencies created between the
patterns). Thus, this method of generation enables us to
control the similarity between the tasks using the number
of patterns (NoP) as the parameter. In our experiments,
we consider two scenarios: (i) completely dissimilar tasks
(NoP = 0) and (ii) highly similar tasks (NoP = 5).

All our experiments comprise 1000 simulation runs for ev-
ery data point to achieve statistically significant results. All
the results are shown with 95% confidence intervals (the er-
rors bars are very close to the marking symbol), obtained by
multiplying the standard error by 1.96 (z-test). For every
simulation, the set of agents and services is first generated
and then the services are assigned to the agents on the basis
of SP . Next, the set of tasks is generated using NoP . In
our experiments, we use a maximum of 20 initial agents in
the organisation which, in turn, faces 1500 tasks over 2000
time-steps to constitute one simulation run. Furthermore,
we set C at 0.25 and M at 0.5 (so that any allocation process
will take up at least half a computational unit). Also, we
set R at 0.25 and D at 1. The maximum size of a pattern is
limited to 8 so that, on average, three patterns are required
to compose a task (which can have a maximum of 25 SIs).
We observed broadly similar patterns with other parameter
settings. Finally, the set of agents A, is kept constant for
closed organisations, while in the dynamic case, a randomly
chosen number of temporary agents are added, as described
in Sec. 2. The results shown here are of experiments where
the start-times and life-times are chosen from a uniform dis-
tribution. However, we also conducted experiments with
a combination of distributions for start-times (uniform and
normal) and life-times (normal and geometric) and found

the resultant trends to be same as these. We present the
results as graphs plotting the percentage of the maximum
profit obtained for the strategies over an increasing SP along
the x-axis (increasing similarity of the agents). The maxi-
mum profit is given by the profit obtained by Central.

4.2 Results: Closed Organisations
In both the scenarios with dissimilar (Fig. 3(a)) and similar
tasks (Fig. 3(b)), k-Adapt performs consistently better than
Random. The difference in their performance narrows down
(from the highest of 40% of profit to 10%) as the similarity of
agents increases because a smart method is correspondingly
less useful when all the agents are homogeneous, as the sig-
nificance of the structure itself diminishes. Also, we see that
k-Adapt and free-Adapt perform better when SP = 0 than
for slightly higher values of SP because, as SP increases and
more agents are capable of a given service, Central con-
tinues performing perfect allocations (as it has up-to-date
information about loads on all agents), while the agents in
the organisations using our method have no way of knowing
which relations have free capacities. However, the perfor-
mance increases for higher values of SP because the average
capacity available for any given service becomes larger as
agents are capable of more services, thus leading to better
task completion times. This is also the reason why Random
improves with increasing SP . We also conducted experi-
ments by varying R from 0 to 0.9 (see Fig. 3(c)) and found
that the fall in the performance of k-Adapt is gradual and
minimal, while it is drastic in all-Adapt. In fact, for higher
values of R, the profit of all-Adapt goes below 0, meaning
the cost is more than the reward obtained. This shows that
meta-reasoning is a crucial aspect in an adaptation process
and cannot be ignored.

AAMAS 2009 • 8th International Conference on Autonomous Agents and Multiagent Systems • 10–15 May, 2009 • Budapest, Hungary

804

4.3 Results: Dynamic Organisations
In the dynamic scenarios, we again find that k-Adapt per-
forms considerably better than Random when tasks are both
dissimilar (Fig. 4(a)) and similar (Fig. 4(b)). More impor-
tantly, unlike k-Adapt, nowolf-Adapt degrades rapidly as
the similarity between agents increases. This shows that
the WoLF principle is very useful for assimilating new agents
into the organisation and maintaining the performance.

Furthermore, Fig. 4(c) gives us an insight into what is hap-
pening to the organisation when the agents are added and
removed. For this experiment, we fixed the start-time at 500
and life-time at 1000 for the temporary agents. The graph
shows the sum of the computations of all pending SIs in
the organisation (left y-axis) across the time duration of the
simulation, and shows the corresponding reorganisation rate
in terms of the number of relations changed in a time-step
(right y-axis). We observe a gradual fall in the load starting
at time=500 corresponding to when temporary agents are
added. Also at time=1500, there is a quick drop and imme-
diate increase because, when the temporary agents leave, the
SIs pending at them are reassigned to the permanent agents.
This reassignment requires at least a time-step after which
only they are visible as pending load again. Also, the rate
of growth of pending load is higher once the agents leave (as
seen by the higher gradient). Looking at the reorganisation
rate, we find that it is high in the beginning and then settles
down to an almost uniform rate. Later, there is a sudden
jump in the rate when the agents are added and this gradu-
ally falls back to the earlier value at around time=700. This
shows that our adaptation process is able to reach its earlier
stable state in reasonable time. As expected, we also find
another blip in the rate when the agents are removed. This
time, it settles much more quickly as the permanent agents
are able to easily reform the older structure that existed
prior to the addition of the temporary agents.

In summary, we find that the performance of our adap-
tation method is around 80% of the centralised allocation
method which is, on average, 15% better than a random re-
organisation approach (reaching up to a maximum of 40%).
Also, we have seen that both the high-level aspects of our
method— the randomised approach for selection of agents
for reorganisation and the WoLF principle for temporary
agents— are crucial for this good performance.

5. CONCLUSIONS AND FUTURE WORK
This paper addresses the problem of developing decentralised
structural adaptation methods for problem solving agent or-
ganisations based on the paradigm of self organisation. Us-
ing a simple organisation model as a framework, we pre-
sented a structural adaptation method that can be applied
individually by all the agents in order to improve the or-
ganisation performance. Using the method, a pair of agents
estimate the utility of changing their relation and take the
appropriate action accordingly. Moreover, our method also
enables an agent to meta-reason about when and with whom
to initiate reorganisation. A useful feature of our adaptation
method is that it works purely by redirecting agent interac-
tions (via the organisation structure) and does not entail
any modifications to the agents themselves or their inter-
nal characteristics. Since the adaptation method is purely
agent-based, decentralised and continuous over time, it sat-
isfies the principles of self-organisation discussed in Sec. 1.
Thus, it can be used by the individual components of a dis-
tributed system to self-manage by helping them adapt their

interactions with the other components in a local and robust
way. We have empirically shown that our method performs
at 80% of a centralised omniscient method and is signifi-
cantly better than a random method.

In future work, we intend to test the applicability of our
method by using real-data from existing distributed com-
puting scenarios. We also plan to improve our method for
scenarios where agents might be gaining new services and
losing old services, thus reflecting systems whose capabili-
ties are upgraded with time.

6. REFERENCES
[1] S. Abdallah and V. Lesser. Multiagent reinforcement

learning and self-organization in a network of agents. In
Proc of the 6th AAMAS, pages 172–179, USA, 2007.

[2] G. Alexander, A. Raja, E. H. Durfee, and D. J. Musliner.
Design paradigms for meta-control in multi-agent systems.
In Proc. of AAMAS Workshop on Metareasoning in
Agent-based Systems, pages 92–103, USA, 2007.

[3] C. Bernon, V. Chevrier, V. Hilaire, and P. Marrow.
Applications of self-organising multi-agents systems.
Informatica, 30(1):73–82, 2006.

[4] M. Bowling and M. Veloso. Rational and convergent
learning in stochastic games. In Proc. of the 17th IJCAI,
pages 1021–1026, USA, 2001.

[5] T. De Wolf and T. Holvoet. Towards autonomic computing:
agent-based modelling, dynamical systems analysis, and
decentralised control. In Proc. of the 1st Intl Workshop on
Autonomic Comp. Princ. and Arch., Canada, 2003.

[6] S. A. Deloach, W. H. Oyenan, and E. T. Matson. A
capabilities-based model for adaptive organizations.
AAMAS, 16(1):13–56, 2008.

[7] G. Di Marzo Serugendo, M.-P. Gleizes, and
A. Karageorgos. Self-organization in multi-agent systems.
The Knowledge Engineering Review, 20(2):165–189, 2005.

[8] G. Di Marzo Serugendo, M.-P. Gleizes, and A. Karageorgos.
Self-organisation and emergence in multi-agent systems:
An overview. Informatica, 30(1):45–54, 2006.

[9] M. E. Gaston and M. desJardins. Agent-organized networks
for dynamic team formation. In Proc. of the 4th AAMAS,
pages 230–237, The Netherlands, 2005. ACM.

[10] M. Hoogendoorn. Adaptation of organizational models for
multi-agent systems based on max flow networks. In Proc.
of the 20th IJCAI, pages 1321–1326, India, 2007.

[11] B. Horling, B. Benyo, and V. Lesser. Using self-diagnosis to
adapt organizational structures. In Proc. of 5th Intl. Conf.
on Autonomous agents, pages 529–536, NY, USA, 2001.

[12] J. F. Hubner, J. S. Sichman, and O. Boissier. Using the
MOISE+ for a cooperative framework of MAS
reorganisation. In Proc. of the 17th Brazilian Symposium
on AI, volume 3171, pages 506–515. Springer, 2004.

[13] S. Kamboj and K. S. Decker. Organizational self-design in
semi-dynamic environments. In Proc. of the 6th AAMAS,
pages 1220–1227, Honolulu, USA, 2007.

[14] J. O. Kephart and D. M. Chess. The vision of autonomic
computing. IEEE Computer, 36(1):41–50, 2003.

[15] R. Kota, N. Gibbins, and N. R. Jennings. Decentralised
structural adaptation in agent organisations. In Proc.
AAMAS Workshop on Organised Adaptation in
Multi-Agent Systems, pages 1–16, 2008.

[16] P. Mathieu, J.-C. Routier, and Y. Secq. Principles for
dynamic multi-agent organizations. In Proc. 5th Pacific
Rim Intl Workshop on MAS, pages 109–122, UK, 2002.

[17] E. M. Maximilien and M. P. Singh. Multiagent system for
dynamic web services selection. In Proc. of 1st Workshop
on Service-Oriented Computing and Agent-Based
Engineering, pages 25–29, Netherlands, 2005.

[18] R. Motwani and P. Raghavan. Randomized algorithms.
Cambridge University Press, New York, USA, 1995.

[19] J. Vazquez-Salceda, V. Dignum, and F. Dignum. Organizing
multiagent systems. AAMAS, 11(3):307–360, 2005.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 36
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 36
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 36
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU (Use these settings with Distiller 7.0 or equivalent to create PDF documents suitable for IEEE Xplore. Created 29 November 2005. ****Preliminary version. NOT FOR GENERAL RELEASE***)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

